Aberrant regulation of MyoD1 contributes to the partially defective myogenic phenotype of BC3H1 cells [published erratum appears in J Cell Biol 1990 Jun;110(6):2231]
نویسندگان
چکیده
Two skeletal muscle-specific regulatory factors, myogenin and MyoD1, share extensive homology within a myc similarity region and have each been shown to activate the morphologic and molecular events associated with myogenesis after transfection into nonmyogenic cells. The BC3H1 muscle cell line expresses myogenin and other muscle-specific genes, but does not express MyoD1 during differentiation. BC3H1 cells also do not upregulate alpha-cardiac actin or fast myosin light chain, nor do they form multinucleate myotubes during differentiation. In this study, we examined the basis for the lack of MyoD1 expression in BC3H1 cells and investigated whether their failure to express MyoD1 is responsible for their defects in differentiation. We report that expression of an exogenous MyoD1 cDNA in BC3H1 cells was sufficient to elevate the expression of alpha-cardiac actin and fast myosin light chain, and to convert these cells to a phenotype that forms multinucleate myotubes during differentiation. Whereas myogenin and MyoD1 positively regulated their own expression in transfected 10T1/2 cells, they could not, either alone or in combination, activate MyoD1 expression in BC3H1 cells. Exposure of BC3H1 cells to 5-azacytidine also failed to activate MyoD1 expression or to rescue the cell's ability to fuse. These results suggest that BC3H1 cells may possess a defect that prevents activation of the MyoD1 gene by MyoD1 or myogenin. That an exogenous MyoD1 gene could rescue those aspects of the differentiation program that are defective in BC3H1 cells also suggests that the actions of MyoD1 and myogenin are not entirely redundant and that MyoD1 may be required for activation of the complete repertoire of events associated with myogenesis.
منابع مشابه
Aberrant Regulation of MyoD1 Contributes to the Partially Defective Myogenic Phenotype of BC3H1 Cells
Two skeletal muscle-specific regulatory factors, myogenin and MyoD1, share extensive homology within a myc similarity region and have each been shown to activate the morphologic and molecular events associated with myogenesis after transfection into nonmyogenic cells. The BC3H1 muscle cell line expresses myogenin and other muscle-specific genes, but does not express MyoDl during differentiation...
متن کاملAberrant Regulation of MyoD1 Contributes to the Partially Defective Myogenic Phenotype of BC3H1 Cells
Two skeletal muscle-specific regulatory factors, myogenin and MyoD1, share extensive homology within a myc similarity region and have each been shown to activate the morphologic and molecular events associated with myogenesis after transfection into nonmyogenic cells. The BC3H1 muscle cell line expresses myogenin and other muscle-specific genes, but does not express MyoDl during differentiation...
متن کاملMyogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoD1, and myogenin
Different mouse muscle cell lines were found to express distinct patterns of myosin heavy chain (MHC) isoforms, MyoD1, and myogenin, but there appeared to be no correlation between the pattern of MHC expression and the patterns of MyoD1 and myogenin expression. Myogenic cell lines were generated from unconverted C3H10T1/2 cells by 5-azacytidine treatment (Aza cell lines) and by stable transfect...
متن کاملAdenovirus 5 E1A represses muscle-specific enhancers and inhibits expression of the myogenic regulatory factor genes, MyoD1 and myogenin.
The early region 1A of adenoviruses encodes two multifunctional proteins that have varied effects on viral and host cell transcription. Expression of adenovirus 5 E1A in the mouse myogenic cell line 23A2 inhibits the differentiation of the cells and represses the expression of reporter genes controlled by several muscle-specific regulatory elements. In addition, differentiation-defective 23A2 E...
متن کاملRetinoic acid induces myogenin synthesis and myogenic differentiation in the rat rhabdomyosarcoma cell line BA-Han-1C
Two clonal rat rhabdomyosarcoma cell lines BA-Han-1B and BA-Han-1C with different capacities for myogenic differentiation have been examined for the expression of muscle regulatory basic helix-loop-helix (bHLH) proteins of the MyoD family. Whereas cells of the BA-Han-1C subpopulation constitutively expressed MyoD1 and could be induced to differentiate with retinoic acid (RA), BA-Han-1B cells di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 110 شماره
صفحات -
تاریخ انتشار 1990